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Helmholtz Conditions and Alternative Lagrangians:
Study of an Integrable HeÂnon ± Heiles System
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Some properties relating to the theory of constants of motion with the existence
of alternative Lagrangians are given, and then the case of the harmonic oscillator
is analyzed. The e 5 1/3 HeÂnon±Heiles system is studied as a deformation of
the harmonic oscillator. Several different alternative Lagrangians compatible with
this deformation are constructed.

1. INTRODUCTION

The search for constants of motion in the Lagrangian approach has been

traditionally related to the existence of one-parameter subgroups of point

transformations that are symmetries of the Lagrangian, according to the
celebrated Noether theorem. However, it has also been proved in recent years

that constants of motion can also be found from the knowledge of alternative

but non-gauge-equivalent Lagrangians. Hojman and Harleston proved that

when there are two alternative regular Lagrangians it is possible to define a

related matrix such that the trace of such a matrix as well as those of the
sequence of powers of it are constants of motion. We recall that by alternative

or ª s-equivalentº (s is for solution) Lagrangians we mean two non-gauge-

equivalent Lagrangian functions that lead to different Euler±Lagrange equa-

tion systems that, however, admit the same set of solutions.(1±8)

The number of known systems admitting alternative Lagrangians is

small and therefore they must be considered as exceptional. The existence
of alternative Lagrangians seems to be directly related to the theory of

nonlinear integrable systems. Moreover, it is connected with some interest-

ing problems such as the existence of nonequivalent quantizations,(9) the
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existence and properties of dynamical symmetries,(6) or the theory of Lax

equations.(10±12) In field theories, this matter is related to soliton equations.

Using the symplectic formalism, a regular Lagrangian function defines
a symplectic form v L 5 2 d u L and an energy function EL 5 D (L) 2 L on

the velocity phase space TQ ( u L is the associated Cartan one-form and D the

Liouville vector field) in such a way that the dynamics is given by the vector

field G L solution of the equation i( G L) v L 5 dEL. Because of this, the existence

of two alternative Lagrangians L(a), a 5 1, 2, for a certain system G L means

the existence of two different symplectic structures v 2 Þ v 1 and two different
energy functions E2 Þ E1 for the same dynamics on the same manifold.

Consequently, the theory of alternative Lagrangians must be considered as

a particular case of the more general theory of bi-Hamiltonian systems.

In this paper, we study the existence of alternative Lagrangians for one

of the three integrable cases of the HeÂnon±Heiles system,(13 ±19) using as an

approach the ideas arising from the so-called theorem of Hojman and Harles-
ton. We first study in Section 2 the relation between the existence of alternative

Lagrangians and the properties of constants of motion and then in Section 3

we obtain several alternative Lagrangians for the harmonic oscillator. In

Section 4, which contains our main results, we study the HeÂnon±Heiles

system as a deformation of the harmonic oscillator and we obtain four different
Lagrangians for the e 5 1/3 HeÂnon±Heiles system, all of them compatible

with the deformation. In Section 5 we make some final comments.

2. THE INVERSE PROBLEM AND THE EXISTENCE OF
ALTERNATIVE LAGRANGIANS

The inverse problem of the Lagrangian dynamics studies the conditions

for a system of second-order differential equations

qÈ i 5 f i(q, qÇ ) (1)

to be the Euler±Lagrange equations of some regular Lagrangian L. This
equation may be reduced to the first-order system

dqi

dt
5 vi

dvi

dt
5 f i(q, v) (2)

From the geometric viewpoint, the velocity phase space is the tangent bundle

t : TQ ® Q of the configuration space Q and the preceding system can be

considered as the one determining the curves projecting on the base space
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of the local integral curves of the second-order vector field G P X(TQ) with

local coordinate expression

G 5 vi -
- qi 1 f i(q, v)

-
- vi

The inverse problem can be presented in a more generalized sense: Are there

functions gij(q, qÇ ) with det[gij ] Þ 0 and a regular Lagrangian L such that
gij(qÈ

j 2 f j) 5 0 are the Euler±Lagrange equation system of the function

L? The problem was studied Helmholtz,(20) who established the so-called

Helmholtz conditions (see refs. 21±23). In terms of the functions f i, these

conditions are given as follows: There should exist a family of functions

gij 5 gij(q, v) such that

(i) gij 5 gji

(ii) det[gij ] Þ 0

- gij

- vk 5
- gik

- vj(iii)

G (gij ) 5
1

2
gkj

- f k

- vi 1
1

2
gik

- f k

- v j(iv)

(v) gik F - f k

- qj 1
1

4

- f k

- vl

- f l

- vj 2
1

2
G 1 - f k

- vj 2 G
5 gjk F - f k

- qi 1
1

4

- f k

- vl

- f l

- vi 2
1

2
G 1 - f k

- vi 2 G
In the affirmative case these five properties lead to the existence of a function

L such that the gij take the form

gij 5
- 2L

- vi - v j

The regularity of L is consequence of condition (ii). In geometric terms these

conditions are related to the existence of symplectic structures.(22±25)

Hojman and Harleston proved, (1) generalizing a result of Currie and

Saletan(26) for the n 5 1 case, that if a system admits two alternative regular

Lagrangians L(a), a 5 1, 2, then the traces of the powers of the product

matrix W21 5 W 2 1
2 W1 are constants of motion (Wa denotes the Hessian matrix

of L(a)). If these constants of motion are nontrivial it is said that they have

been obtained by a non-Noether procedure.
Consequently, the existence of alternative Lagrangians for a certain

system leads to the existence of integrals of motion and hence is related to

the theory of integrable systems. Moreover, Crampin et al.(4) proved that if

the (1, 1) tensor field R defined by v 2(X, Y ) 5 v 1(RX, Y ) satisfies some
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properties, then the n integrals obtained by Hojman and Harleston are in

involution and the system is therefore completely integrable. Conversely,

only systems endowed with a certain number of constants of motion, as, e.g.,
integrable or superintegrable systems, can admit alternative Lagrangians.

The number of known systems admitting alternative Lagrangians is very

small and usually they correspond to the case of velocity-independent forces.

The above theorem of Hojman and Harleston can be considered as a non-

Noether procedure for obtaining integrals of motion, but when the system

has velocity-free forces (see, e.g., ref. 7) then this procedure becomes simpler.
In this case the following two properties are satisfied:

1. The functions Wij 5 - 2L / - vi - v j, i, j 5 1, . . . , n, are constants

of motion.

2. The functions Bij 5 - 2L / - vi - q j, i, j 5 1, . . . , n, are symmetric.

The important point is that when a system G L admits alternative regular
Lagrangians L(a) Þ L, a 5 1, . . . , A, then properties 1 and 2 are also true

for every one of these alternative Lagrangians. This property agrees with the

Helmholtz approach since if the functions f i are velocity-independent, then

the three last conditions reduce to the following:

(iiib)
- gij

- vk 5
- gik

- v j

(ivb) G (gij ) 5 0

(vb) gik 1 - f k

- qj 2 5 gjk 1 - f k

- qi 2
Next we consider the one- and the two-dimensional cases.

If n 5 1, then gij(q, qÇ ) reduce to a unique function g(q, qÇ ). In this case

four of the five Helmholtz conditions become identities and the only one to

be satisfied just states that g must be a constant of motion, dg/dt [ G (g) 5
0. This g can be taken as a real number g [ 1, so all the one-dimensional

systems are Lagrangian [this is a well-known result since f (q) can always

be written as the derivative of another function which can be denoted as

2 V(q)]. The important point is that if the system admits a Lagrangian L,

then every function g(EL) of the associated energy EL is a constant of motion.

Consequently, one-dimensional Lagrangian systems always admit an infinite
number of alternative Lagrangians(26) (one of them is, of course, the stan-

dard one).

Suppose now the n 5 2 case. Then we can state(7) following proposition:

Proposition 1. Let G be a n 5 2 degrees of freedom dynamical system

G 5 vi - / - qi 1 f i - / - vi, with f i 5 f i(q1, q2), i 5 1, 2. Suppose that Fr 5 Fr(q,
v), r 5 1, 2, 3, are three functions such that:
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(a) The functions Fr(q, v), r 5 1, 2, 3, are constants of motion; i.e.,

G (Fr) 5 0.

(b) - F2/ - v1 5 - F1/ - v2 and - F2/ - v2 5 - F3/ - v1.
(c) The three functions Fr and the two forces f i satisfy the matrix

equation

1 F1 F2

F2 F3 2 1
- f 1

- q1

- f 1

- q2

- f 2

- q1

- f 2

- q2 2 5 1
- f 1

- q1

- f 1

- q2

- f 2

- q1

- f 2

- q2 2 1 F1 F2

F2 F3 2
Then:

1. The vector field G is a dynamical system arising from a regular

Langrangian L, i.e., G 5 G L.

2. The three functions Fr(q, v), r 5 1, 2, 3, are the matrix elements,

F1 5 W11, F2 5 W21, F3 5 W22, of the Hessian W of the Lagrangian L.

Notice that the three functions Fr can be functionally dependent (even
trivial) provided that the matrix is nonsingular. The important point is that

every set of such three functions determines a particular Lagrangian. So, if

for a certain G we can construct several appropriate sets of functions F (a)
r ,

a 5 1, . . . , A, then G will be a Lagrangian system admitting several different

s-equivalent Lagrangians L(a), a 5 1, . . . , A.

3. ALTERNATIVE LAGRANGIANS FOR THE HARMONIC
OSCILLATOR

Let us first consider an n 5 2 system with Lagrangian L representing

a direct sum of two noninteracting one-dimensional systems

L 5
1

2
(v2

x 1 v2
y) 2 U(x) 2 W( y)

This system is separable, the energy of each degree of freedom being a

constant of motion. A simple way of obtaining alternative Lagrangians to

take into account that L can be written in the form L 5 Lx 1 Ly with

Lx 5
1

2
v2

x 2 U(x), Ly 5
1

2
v2

y 2 W( y)

considering equivalent Lagrangians in one dimension, L8x and L8y, and defining

L8 5 L8x 1 L8y.
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For studying a more general Lagrangian mixing both degrees of freedom,

we see that condition (c) leads to

F2(U 9xx 2 W9yy) 5 0

Hence if F2 Þ 0, we obtain

U 5
1

2
Ax2 1 c1x, W 5

1

2
Ay2 1 c2 y

Since the linear terms can be eliminated by a translation, we arrive at the

isotropic oscillator (a related result can be found in ref. 3).

1. The standard Lagrangian of the two-dimensional harmonic oscillator

can be considered as a particular case of the function(6)

L(1) 5
a

2
(v2

x 2 Ax2) 1
d

2
(v2

y 2 Ay2) 1 b(vxvy 2 Axy)

where a, b, d are real constants such that ad 2 b2 Þ 0. In this case

W (1)
11 5 a, W (1)

12 5 b, and W (1)
22 5 d, which are trivial constants of motion.

The function L(1) can be considered as rather close to the standard
Lagrangian, nevertheless there exist other, not so simple alternative Lagrangi-

ans. Next we will prove that these more general alternative functions can be

explicitly obtained by integration; the first step of the method is the construc-

tion of a matrix satisfying the necessary conditions to be considered as a

Hessian matrix.

The isotropic harmonic oscillator is a superintegrable system(27±30) with
three independent constants: I1 5 (1/2)(v2

x 1 Ax2), I2 5 (1/2) (v2
y 1 Ay2), and

I3 5 yvx 2 xvy. Nevertheless, instead of working with I3, we will make use

of the nondiagonal component of the Fradkin tensor I4 5 vxvy 1 Axy.(31) In

this way the three constants will be quadratic in the velocities. Hence, if we

restrict the study to Hessian functions Wij, i, j 5 1, 2, linear in the three

integrals I1, I2, and I4, then the associated Lagrangians will be functions of
fourth order in the velocities.

We omit the details of the computations and give directly the regular

Lagrangians obtained. We only make two remarks. First, in this case the

matrix of partial derivatives of the forces is a multiple of the identity matrix;

therefore condition (c) is trivially satisfied. Second, in the following we will

always assume that F2 Þ 0.
2. Let us consider as functions Fr , r 5 1, 2, 3, the following set of

constants of motion: F1 5 I2, F2 5 I4, and F3 5 I1. We have - F2/ - vx 5 - F1/

- vy 5 vy and - F2/ - vy 5 - F3/ - vx 5 vx. Thus we know that there must exist

a new Lagrangian L(2) such that its Hessian must take the form W (2)
11 5
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I2, W (2)
12 5 I4, and W (2)

22 5 I1. After integration we obtain that this L(2) is

given by

L(2) 5
1

4
(v2

xv
2
y) 1

1

4
k( y2v2

x 1 x2v2
y) 1 kxyvxvy 2

3

4
k2x2y2

3. If we take W (3)
11 5 I4, W (3)

12 5 I1, and W (3)
22 5 0, then

L(3) 5
1

6
v3

xvy 1
1

2
A(xyv2

x 1 x2vxvy) 2
1

2
A2x3y

4. If we take W (4)
11 5 0, W (4)

12 5 I2, and W (4)
22 5 I4, then

L(4) 5
1

6
vxv

3
y 1

1

2
A(xyv2

y 1 y2vxvy) 2
1

2
A2xy3

Although these three functions L(a), a 5 2, 3, 4, can be considered as the
three fundamental Lagrangians of degree four in the velocities, we will see

that the following two alternative Lagrangians, to be denoted by L(5) and L(6),

will be more closely related to the HeÂnon±Heiles system.

5. Now let us consider F1 5 I1 1 I2, F2 5 I4, and F3 5 I1 1 I2. They

satisfy the three conditions of Proposition 1. Therefore W (5)
11 5 I1 1 I2,

W (5)
12 5 I4, and W (5)

22 5 I1 1 I2, from which we obtain

L(5) 5
1

24
(v4

x 1 v4
y) 1

1

4
v2

xv
2
y 1

1

4
A(x2 1 y2)(v2

x 1 v2
y) 1 Axyvxvy

2
1

8
A2(x4 1 6x2y2 1 y4)

6. If we take W (6)
11 5 I4, W (6)

12 5 I1 1 I2, and W (6)
22 5 I4, then

L(6) 5
1

6
(v3

xvy 1 vxv
3
y) 1

1

2
Axy(v2

x 1 v2
y) 1

1

2
A(x2 1 y2)vxvy

2
1

2
A2(x3y 1 xy3)

All these new Lagrangians L(a) determine different equations, but the same

dynamics as the standard Lagrangian L. The only problem is that the function
det W (a) (a Þ 1) is not constant on the phase space TQ ’ R 4; so every L(a)

will define not only the dynamics of the harmonic oscillator, but also another

one of singular character on the submanifold M (a) , R 4 which is the zero-

level set of the function det W (a). For example, for L(3) and L(4) we obtain
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M (3) 5 I 2 1
1 (0) and M (4) 5 I 2 1

2 (0); concerning L(5) and L(6), we obtain

detW (5) 5 2 det W (6) 5 (I1 1 I2)
2 2 I 2

4

5 [A( y 2 x)2 1 (vy 2 vx)
2] [A( y 1 x)2 1 (vy 1 vx)

2]

and hence

M (5) 5 M (6) 5 N1 ø N2

where

N1 5 {(x, y, vx , vy) ) y 5 x, vy 5 vx}

and

N2 5 {(x, y, vx , vy) ) y 5 2 x, vy 5 2 vx}

The existence of alternative Lagrangians is not limited to L(1) and all these

fourth-order functions. As a last alternative Lagrangian we will derive a

function of sixth order in the velocities.

7. If we take W (7)
11 5 (I1 1 I2)

2 1 I 2
4, W (7)

12 5 2(I1 1 I2)I4, and W (7)
22 5

(I1 1 I2)
2 1 I 2

4, then these three functions satisfy property (b) and they lead to

L(7) 5
1

120
(v6

x 1 v6
y) 1

1

8
(v4

xv
2
y 1 v2

xv
4
y) 1

A

24
[(x2 1 y2)(v4

x 1 6v2
xv

2
y 1 v4

y)

1 8Axy(v3
xvy 1 vxv

3)y] 1
A2

8
[(x4 1 6x2y2 1 y4)(v2

x 1 v2
y)

1 8(x3y 1 xy3)vxvy] 2
A3

24
(x6 1 15x4y2 1 15x2y4 1 y6)

Before studying the HeÂnon±Heiles system, we remark that a Lagrangian L
determines an associated energy function EL and that for most of Lagrangians

the energy EL coincides with the Newtonian energy EN 5 T 1 V. If two

Lagrangians are gauge equivalent, then they determine the same energy, that

is, if L(2) 5 L(1) 1 dg/dt, then E (2)
L 5 E (1)

L . This property is not usually true
for the case of s-equivalence. Actually, every one of the alternative Lagrangi-

ans obtained in this section determines an energy E (a)
L Þ T 1 V (even in the

case of L(1) with a Þ 1, b Þ 0, and d Þ 1). The point is that the Helmholtz

conditions guarantee the existence of a Lagrangian, but they do not impose

that this Lagrangian be of the form T(q, v) 2 V(q) with the kinetic term T
quadratic in velocities. However, although E (a)

L Þ E (b)
L , a Þ b, all of them

are constants of motion, that is,

d

dt
E (a)

L [ G L(E (a)
L ) 5 0, a 5 1, 2, . . . , A

Similarly, the flow of infinitesimal symmetries preserves the set of integral



Helmholtz Conditions and the HeÂnon ± Heiles System 2057

curves of the system (in our case the harmonic oscillator) and these symmetries

very often appear as symmetry of the Lagrangian (in some cases the symmetry

is hidden as for the Runge±Lenz vector). When the Lagrangian is not uniquely
determined, an infinitesimal symmetry appears in a different way in each

Lagrangian. Although we are not concerned in this paper with quantum

mechanics, this is a question that seems to be related to the existence of

different ways of quantizing the classical system, here the harmonic oscillator.

4. ALTERNATIVE LAGRANGIANS FOR THE e 5 1/3
HEÂNON± HEILES SYSTEM

The standard Lagrangian L of the HeÂnon±Heiles system takes the form

L 5
1

2
(v2

x 1 v2
y) 2

1

2
(Ax2 1 By2) 2 x2y 2 e y3

Only three integrable cases are known (13 ±18): (i) e 5 1/3, B 5 A, (ii) e 5 2,

A and B arbitrary, and (iii) e 5 16/3, B 5 16A. Since n 5 2, integrability

means just the existence of a second constant of motion J2 (J1 is the energy).
The two first cases (i) and (ii) are Hamilton±Jacobi-separable with J2 quadratic

in the velocities. The separability of case (iii) has been recently studied

making use of non-point transformations.(18,19)

The HeÂnon±Heiles system can be considered as the result of a ª deforma-

tionº of the harmonic oscillator. By ª deformationº we mean a new system

(or family of systems) depending on a certain number of parameters l k ,
k 5 1,. . . , K, in such a way that when l k ® 0 we recover the original

undeformed system. Concerning the Lagrangian of the e 5 1/3 case, it arises

as the l 5 1 particular value of the l -dependent Lagrangian L given by

L l 5
1

2
(v2

x 1 v2
y) 2

1

2
(Ax2 1 Ay2) 2 l F x2y 1

1

3
y3 G

This more general function L l determines an integrable system for arbitrary

values of the parameter l ; the corresponding constant of motion is given by

J2( l ) 5 vxvy 1 Axy 1 l F 1

3
x3 1 xy2 G

Consequently, these two functions, the Lagrangian L l and constant J2( l ),

satisfy

lim
l ® 0

L 5 L, lim
l ® 0

J2( l ) 5 I4

We remark that the e 5 1/3 case is an integrable deformation of a superinte-
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grable system. That is, the original undeformed system is endowed with three

integrals of motion (i.e., Lagrangian L with three symmetries) and the e 5
1/3 HeÂnon±Heiles system with only two. Therefore, the deformation preserves
integrability, but the new system has fewer symmetries than the original one.

In order to look for new l -dependent Lagrangians L (a) alternative to the

standard function L we will follow the same strategy as for obtaining the

functions L(a), a 5 1,. . . , 8, for the harmonic oscillator; that is, make use

of the properties (a)±(c).

We begin with point (c). For the general case of the HeÂnon±Heiles
problem it takes the form

1 A 1 2y 2x

2x B 1 6 e y 2 1 W11 W12

W12 W12 2 5 1 W11 W12

W12 W22 2 1 A 1 2y 2x

2x B 1 6 e y 2
Hence we obtain

2x(W11 2 W22) 1 (B 1 6 e y 2 A 2 2y)W12 5 0

Consequently, if A 5 B and e 5 1/3, then this equation leads to W22 5 W11

with W12 arbitrary.

We have obtained the following four Lagrangians.

1. If we take W (1)
11 5 W (1)

22 5 0, W (1)
12 5 1, then the Lagrangian L (1) takes

the form

L (1) 5 vxvy 2 Axy 2 l F 1

3
x3 1 xy2 G

Besides being a new Lagrangian for the e 5 1/3 system, it satisfies

lim
l ® 0

L (1) 5 vxvy 2 Axy

Hence, the function L(1) is compatible with the deformation for a 5 d 5 0.

Moreover, as L (1) is a quadratic function, it is directly related to the constant

J2. The following proposition shows this interesting characteristic.

Proposition 2. The constant of motion J2 of the e 5 1/3 HeÂnon±Heiles

system is the energy E (1) of the alternative Lagrangian L (1).

The proof follows directly from the definition of the energy, that is,

E (1) 5 D ( L (1)) 2 L (1) 5 J2. This property must be considered as a peculiarity

of L (1) and, in a sense, it singles this particular function out from the other

alternative Lagrangians.

2. Let us consider F1 5 F3 5 J1 and F2 5 J2. They satisfy the three

conditions of proposition 1. Thus there exist a new Lagrangian L (2) with

Hessian matrix W (2)
11 5 W (2)

22 5 J1, W (2)
12 5 J2. It takes the form
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L (2) 5
1

24
(v4

x 1 v4
y) 1

1

4
v2

xv
2
y 1

1

2 F 1

2
A(x2 1 y2) 1 l 1 x2y 1

1

3
y3 2 G (v2

x 1 y2
y)

1 F Axyvxvy 1 l 1 1

3
x3 1 xy2 2 G vxvy 2

1

8
A2(x4 1 6x2y2 1 y4)

2
1

6
l A(5x4y 1 10x2y3 1 y5) 2

1

18
l 2(x6 1 15x4y2 1 15x2y4 1 y6)

3. If we take W (3)
11 5 W (3)

22 5 J2, W (3)
12 5 J1, then we obtain the follow-

ing function:

L (3) 5
1

6
(v3

xvy 1 vxv
3
y) 1

1

2 F Axy 1 l 1 1

3
x3 1 xy2 2 G (v2

x 1 v2
y) 1

1

2 F A(x2 1 y2)

1 l 1 x2y 1
1

3
y3 2 G vxvy 2

1

2
A2(x3y 1 xy3) 2

1

6
l A (x5 1 10x3y2 1 5xy4)

2
1

9
l 2(3x5y 1 10x3y3 1 3xy5)

In the following we will denote by Fk and Gk the functions

Fk 5
1

2
[(x 1 y)k 1 (x 2 y)k], Gk 5

1

2
[(x 1 y)k 2 (x 2 y)k]

Making use of this notation, we can rewrite the Lagrangians L (2) and L (3) as

L (2) 5 L(5) 1
l
18

[3G3(v
2
x 1 v2

y) 1 6F3vxvy 2 3AG5 2 l F6]

L (3) 5 L(6) 1
l
18

[3F3(v
2
x 1 v2

y) 1 6G3vxvy 2 3AF5 2 l G6]

Consequently, these two Lagrangians L (2) and L (3) satisfy

lim
l ® 0

L (2) 5 L(5), lim
l ® 0

L (3) 5 L(6)

We close this section by obtaining a function L (4) of sixth order in

the velocities.

4. If we take W (4)
11 5 J 2

1 1 J 2
2, W (4)

12 5 2J1J2, and W (4)
22 5 J 2

1 1 J 2
2, prop-

erties (a) and (b) are satisfied; we have obtained that this new Lagrangian

takes the form
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L (4) 5 L(7) 1 1 l
36 2 [G3(v

4
x 1 6v2

xv
2
y 1 v4

y) 1 4F3(v
3
xvy 1 vxv

2
y)]

1 1 l
18 2 [(3AG5 1 l F6)(v

2
x 1 v2

y) 1 2(3AF5 1 l G6)vxvy]

2 1 l
9 2 F 1 l A

2 2 F8 1 1 3A2

4 2 G7 1 1 l 2

9 2 G9 G
It satisfies

lim
l ® 0

L (4) 5 L(7)

5. FINAL COMMENTS

We have studied the e 5 1/3 HeÂnon±Heiles system and proven that

it admits several alternative Lagrangians. All these new functions can be

considered as deformations of alternative Lagrangians previously obtained

for the harmonic oscillator. In this study we have made use of two important

properties: (i) The second integral of the deformed system ( l Þ 0) is quadratic,

and (ii) the original system ( l 5 0) is superintegrable. Concerning the two
other cases, the situation is different: the second case (i.e., e 5 2) satisfies

(i), but not (ii), and, conversely, the last case (i.e., e 5 16/3) satisfies (ii),

but not (i).

Finally, another interesting system that can also be considered as a

deformation of the harmonic oscillator is the so-called Smorodinsky ±

Winternitz system.(29) It seems natural to study the Helmholtz conditions for
this superintegrable system (in this case the results must be independent of

the dimension). We think that these questions should be investigated in

the future.
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